145 research outputs found

    Making sense of bridge monitoring: Vision for the future

    Get PDF
    PublishedThis paper presents a vision for the future monitoring systems which will become normal requirements for management of bridges as key objects of national infrastructure in the UK and elsewhere. Rather than being pushed by authorities and legislation, we expect that bridge managers will recognize the clear business cases for investing in well-designed targeted monitoring. To support this proposition, the paper presents two case studied where state-of-the-art bridge monitoring technology was used or potentially could be used to: • Decide when to inspect and change bridge bearings, and • Decide when to close various traffic lanes to reduce probability of overstressing bridge structural components. © 2013 Taylor & Francis Group

    Asymptotic identification uncertainty of close modes in Bayesian operational modal analysis

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordClose modes are not typical subjects in operational modal analysis (OMA) but they do occur in structures with modes of similar dynamic properties such as tall buildings and towers. Compared to well-separated modes they are much more challenging to identify and results can have significantly higher uncertainty especially in the mode shapes. There are algorithms for identification (ID) and uncertainty calculation but the value itself does not offer any insight on ID uncertainty, which is necessary for its management in ambient test planning. Following a Bayesian approach, this work investigates analytically the ID uncertainty of close modes under asymptotic conditions of long data and high signal-to-noise ratio, which are nevertheless typical in applications. Asymptotic expressions for the Fisher Information Matrix (FIM), whose inverse gives the asymptotic ‘posterior’ (i.e., given data) covariance matrix of modal parameters, are derived explicitly in terms of governing dynamic properties. By investigating analytically the eigenvalue properties of FIM, we show that mode shape uncertainty occurs in two characteristic types of mutually uncorrelated principal directions, one perpendicular (Type 1) and one within the ‘mode shape subspace’ spanned by the mode shapes (Type 2). Uncertainty of Type 1 was found previously in well-separated modes. It is uncorrelated from other modal parameters (e.g., frequency and damping), diminishes with increased data quality and is negligible in applications. Uncertainty of Type 2 is a new discovery unique to close modes. It is potentially correlated with all modal parameters and does not vanish even for noiseless data. It reveals the intrinsic complexity and governs the achievable precision limit of OMA with close modes. Theoretical findings are verified numerically and applied with field data. This work has not reached the ultimate goal of ‘uncertainty law’, i.e., explicitly relating ID uncertainty to test configuration for understanding and test planning, but the analytical expressions of FIM and understanding about its eigenvalue properties shed light on possibility and provide the pathway to it.Engineering and Physical Sciences Research Council (EPSRC

    Human factors simulation for motion and serviceability in the built environment

    Get PDF
    This is the author accepted manuscriptEngineering and Physical Sciences Research Council (EPSRC

    Vibration serviceability of Helix Bridge, Singapore

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record. Published Online: May 18, 2016The Helix Bridge is a key feature of the iconic Marina Bay Sands development in Singapore. It usually functions as a pedestrian link between the Esplanade and Sands Casino/Hotel, but is occasionally used as a viewing platform for events in Marina Bay that have centred on a small purpose built stadium opposite the bridge. To supplement the stadium capacity, a number of integral cantilevered 'pods' have been built into Helix Bridge. Because of its dual role Land Transport Authority, Singapore commissioned a vibration serviceability evaluation of the bridge following a specification developed by Arup Australia. The vibration serviceability evaluation was carried out in three stages. First, an experimental campaign comprising multi-shaker modal testing was used to estimate modal properties. Next, limited pedestrian and crowd testing directly evaluated the dynamic response to individuals and small groups walking, running or jumping. Finally, modal properties were utilised, with bespoke simulation software, to predict the performance of the bridge under extreme crowd loading, using models specified in the most up-to-date design guidance on crowd loading for pedestrian bridges and stadia. The bridge performance proved to be acceptable, both in the direct testing with small groups and the simulations of large crowds

    Footbridge dynamic performance assessment using inertial measurement units

    Get PDF
    This is the author accepted manuscriptDynamic performance of footbridges is still a great concern to designers, operators and users, with many structures requiring investigation before, during and after construction to manage performance. We have been investigating the use of wireless inertial measurement units (IMUs) designed for biomechanics, health and sports science application for estimating human dynamic loads or ground reaction forces (GRFs) on structures. The aim has been to move from direct measurements using force plates and treadmills, via optical motion capture in the laboratory (with application of Newton’s Second law), to unconstrained field conditions. Initially we used IMUs to evaluate pedestrian synchronisation, but we found that a single IMU attached to the C7 neck vertebra can provide a remarkably accurate estimate of vertical GRF. With an ability to communicate and synchronise within a group wirelessly, to identify orientation and transform accelerations into world coordinates, IMUs can identify both the GRF force vectors and their time varying location with a moving pedestrian. As a side-benefit, the signal to noise ratio and synchronisation accuracy are sufficient to enable low-cost wireless footbridge ambient vibration testing and monitoring. So far we have used IMUs for ambient and forced vibration testing (the latter using a human shaker), moving pedestrian load and response measurement and crowd tracking. There are many more possibilities

    Vision-Based Bridge Deformation Monitoring

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Optics-based tracking of civil structures is not new, due to historical application in surveying, but automated applications capable of tracking at rates that capture dynamic effects are now a hot research topic in structural health monitoring. Recent innovations show promise of true non-contacting monitoring capability avoiding the need for physically attached sensor arrays. The paper reviews recent experience using the Imetrum Dynamic Monitoring Station (DMS) commercial optics-based tracking system on Humber Bridge and Tamar Bridge, aiming to show both the potential and limitations. In particular, the paper focuses on the challenges to field application of such a system resulting from camera instability, nature of the target (artificial or structural feature), and illumination. The paper ends with evaluation of a non-proprietary system using a consumer-grade camera for cable vibration monitoring to emphasize the potential for lower cost systems where if performance specifications can be relaxed.The GPS system at Humber was created by Dr. Ki Koo with support from EPSRC grant EP/F035403/1. DH was supported via the Marie Curie Fellowship programme and as such the research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 330195

    Accurate deformation monitoring on bridge structures using a cost-effective sensing system combined with a camera and accelerometers

    Get PDF
    This is the author accepted manuscript. The final version is available from American Society of Civil Engineers via the DOI in this record.Information on deformation is critical for bridge condition evaluation but accurate characterisation, usually via discrete displacement measurements, remains a challenging task. Vision-based systems are promising tools, possessing advantages of easy installation, low cost and adequate resolution in time and frequency domains. However, vision-based monitoring faces several field challenges and might fail to achieve the required level of working performance in some real-world test conditions e.g.involving low-contrast patterns and mounting instability of optical sensors. To make the best use of the potential of vision-based systems, a mixed sensing system consisting of a consumer-grade camera and an accelerometer is proposed in this study for accurate displacement measurement. The system considers automatic compensation of camera shake and involves autonomous data fusion process for noise reduction. The proposed system is demonstrated through a field monitoring test on a short-span railway bridge and is validated to offer higher accuracy and wider frequency range than using a camera alone. Displacement data by the mixed system are demonstrated to be viable for estimating bridge influence line, indicating the potential for bridge condition assessment

    Parameter identification of pedestrian's spring-mass-damper model by ground reaction force records through a particle filter approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The spring-mass-damper (SMD) model with a pair of internal biomechanical forces is the simplest model for a walking pedestrian to represent his/her mechanical properties, and thus can be used in human-structure-interaction analysis in the vertical direction. However, the values of SMD stiffness and damping, though very important, are typically taken as those measured from stationary people due to lack of a parameter identification methods for a walking pedestrian. This study adopts a step-by-step system identification approach known as particle filter to simultaneously identify the stiffness, damping coefficient, and coefficients of the SMD model's biomechanical forces by ground reaction force (GRF) records. After a brief introduction of the SMD model, the proposed identification approach is explained in detail, with a focus on the theory of particle filter and its integration with the SMD model. A numerical example is first provided to verify the feasibility of the proposed approach which is then applied to several experimental GRF records. Identification results demonstrate that natural frequency and the damping ratio of a walking pedestrian are not constant but have a dependence of mean value and distribution on pacing frequency. The mean value first-order coefficient of the biomechanical force, which is expressed by the Fourier series function, also has a linear relationship with pacing frequency. Higher order coefficients do not show a clear relationship with pacing frequency but follow a logarithmic normal distribution.The authors would like to acknowledge the financial support provided by National Natural Science Foundation of China (51478346, 51778465) and State Key Laboratory for Disaster Reduction of Civil Engineering (SLDRCE14-B-16)

    Power Spectral-Density Model for Pedestrian Walking Load

    Get PDF
    This is the author accepted manuscript. The final version is available from American Society of Civil Engineers via the DOI in this recordIntensive vibrations may occur in slender structures like footbridges and long-span floors due to movement of pedestrians. Problems are usually treated in the time domain as Fourier series models of the forcing function, but most methods have disadvantages of neglecting the stochastic character of human walking, being computationally inefficient for random vibration analysis, and overestimating responses in the case of resonance. Meanwhile, frequency-domain models of other types of structural loading are efficient while being a more acceptable approach widely adopted for dealing with stochastic response problems. Hence, an experiment-based power spectral-density (PSD) model normalized to walking frequency and order of harmonic is proposed. To construct this model, 1,528 individual walking-load time histories were collected from an experiment on a rigid floor. These records were then linked to obtain a smaller number of longer samples for a good frequency resolution in spectral analysis. Using the linked samples and for a frequency normalized to mean walking frequency, PSD models in the range 1±0.05 for the harmonic and subharmonic are suggested as a Gaussian mixture with eight model parameters. Via the stationary and nonstationary stochastic vibration theory, the proposed model is used to predict the structural response in terms of root-mean square and peak of acceleration. The framework is finally tested via field measurements demonstrating applicability in practical design work.National Natural Science Foundation of ChinaState Key Laboratory for Disaster Reduction of Civil Engineerin

    Quantifying and managing uncertainty in operational modal analysis

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as ‘uncertainty laws’, these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.This work is funded by the UK Engineering and Physical Sciences Research Council (EP/N017897/1 & EP/N017803/1). The support is gratefully acknowledged
    • …
    corecore